Выберите городМосква
Москва
Алматы
Екатеринбург
Тюмень
Новосибирск
Сочи
Москва
Алматы
Екатеринбург
Тюмень
Новосибирск
Сочи
Личный кабинет СДО
Выберите городМосква
Москва
Екатеринбург
Тюмень
Сочи
Москва+7 495 231-23-51
Екатеринбург
Тюмень
Сочи
PYNN

Нейронные сети на Python

Вендор
Тематика
Тип курса
Авторизованный
Длительность
24 ак. часов
Стоимость
57 780 RUB
Описание

Практический курс «Введение в нейронные сети» — основы нейросетей для аналитиков, разработчиков Big Data, руководителей и специалистов по работе с большими данными.

О продукте:

Искусственная нейронная сеть (нейросеть) – это математическая модель с программной или аппаратной реализацией, имитирующая функционирование биологических нервных клеток живого организма. В отличие от других вычислительных моделей, нейросети ориентированы на биологические принципы. Благодаря этому нейросетевые модели обладают следующими качествами:

  • массовый параллелизм;
  • распределённое представление информации и вычисления;
  • способность к обучению и обобщению;
  • адаптивность;
  • обработки информации в контексте окружающей среды;
  • толерантность к ошибкам;
  • низкое энергопотребление.

Правила работы нейросетевых алгоритмов не программируются, а вырабатываются в процессе обучения. Это обеспечивает адаптивность моделей к изменениям входных сигналов, включая шумовые воздействия. Сегодня нейросети считаются одним из наиболее популярных методов машинного обучения (Machine Learning) и используются в различных областях деятельности для решения следующих прикладных задач в условиях неполноты входной информации:

  • распознавание образов (визуальных, аудиозаписей, видеопотоков, графических изображений, рукописного текста и пр.);
  • прогнозирование будущих событий (поведение пользователей, погодные явления, курсы валют, возникновение и развитие чрезвычайных ситуаций и пр.);
  • классификация и кластеризация данных (финансовый скоринг, медицинская диагностика, выявление мошеннических операций);
  • интеллектуальный анализ данных, оптимизация бизнес-процессов и принятие управленческих решений.

Как именно нейросетевые алгоритмы и инструменты моделирования можно использовать для конкретных бизнес-кейсов, вы узнаете в рамках нашего образовательного курса «Введение в нейронные сети».

О курсе:

Данный курс является введением в тематику нейронных сетей. Основная цель – познакомить слушателей с современными подходами в нейросетевой обработке различных типов данных: текста, аудио и изображений. Большое внимание в курсе уделено именно практическому решению указанных задач на языке Python. По окончанию курса вы овладеете навыками создания полноценных решений с использованием нейросетей от сбора данных и выбора архитектуры нейросети до продуктивизации в виде API сервиса.

Продолжительность: 6 дней, 24 академических часа / 8 дней, 32 академических часа*

Соотношение теории к практике 50/50

Методические материалы: учебное пособие на русском языке

Кому полезен курс

Специалисты по работе с большими данными, разработчики, руководители желающие понять принципы функционирования нейронных сетей и получить практический навык их использования.

Необходимая подготовка
  • Опыт программирования на Python

Ваш результат обучения

Программа курса

1. Введение в нейронные сети

    • Теоретическая часть: в рамках занятия рассказывается о задачах, которые решаются методами машинного обучения. Даются основные понятия о постановке таких задач, метриках качества, цикле разработки решения. Подробно рассказывается, в каких случаях классические методы уступают в качестве работы нейронным сетям.
    • Практическая часть: погружение в фреймворк PyTorch языка Python. Рассматривается пример модели для классификации изображений.

2. Работа с табличными данными* (входит в расширенную версию курса — 32 ак.ч.)

    • Теоретическая часть: в рамках занятия рассматриваются методы обработки и анализа табличных данных с использование библиотек pandas и matplotlib. Дается описание архитектуры полносвязной нейронной сети и разбираются математические основы ее работы.
    • Практическая часть: рассматриваются примеры решения задачи классификации на табличных данных. Разбирается код создания модели с нуля на PyTorch, подготовка данных и обучение модели.

3. Обработка изображений и решение задач компьютерного зрения

    • Теоретическая часть: на занятии вы знакомитесь с основными задачами компьютерного зрения (CV – computer vision), а именно: классификацией изображений, детектированием объектов на них, сегментацией различных участков изображений и определением ключевых точек. Даются основные понятия сверточных нейронных сетей и современных архитектур для решения указанных задач.
    • Практическая часть: примеры использования алгоритма Yola для детекции объектов на изображении. Разметка изображений с использованием инструмента Label Studio.

4. Задачи обработки текстовых данных

    • Теоретическая часть: на занятии рассказывается о задачах в области обработки естественного языка (NLP – natural language processing), среди которых выделяются классификация текстов, поиск ключевых сущностей, расстановка знаков препинания и капитализация, векторизация и поиск семантически близких текстов, а также суммаризация. Описываются классические частотные подходы к обработке текстов, а также нейросетевые на основе рекуррентных нейронных сетей и трансформеров.
    • Практическая часть: решение задачи поиска ключевых сущностей на основе регулярных выражения, фреймворка Natasha и предобученной сети BERT.

5. Большие языковые модели* (входит в расширенную версию курса — 32 ак.ч.)

    • Теоретическая часть: рассмотрим передовые решения для задач суммаризации и построения чат-ботов на основе больших языковых моделей (LLM – large language model). Дается обзор проприетарных и открытых решений. Описываются нюансы эксплуатации и обучения LLM.
    • Практическая часть: создание чат-бота на основе открытой модели. Тестирование модели суммаризации текста.

6. Основы работы с аудиоданными

    • Теоретическая часть: в этом уроке рассказывается о том, с чего начинается обработка аудио данных, какие задачи стоят перед инженерами и как они их решают. Упор делается на современные подходы для перевода речи в текст (ASR – automatic speech recognition), диаризации спикеров и классификации голоса по полу и эмоциям.
    • Практическая часть: построение пайплайна речевой аналитики с дополнительной частью по суммаризации полученных транскриптов речи

7. Подготовка моделей перед использованием в продуктиве

    • Теоретическая часть: в рамках урока делается обзор основных фреймворков для работы с нейронными сетями на языке Python, а также других языках. Дается описание основных форматов, в которые нейронные сети могут быть сконвертированы для дальнейшей эксплуатации. Отдельно уделяется вопрос унификации формата и конвертации в onnx, а также оптимизации под разные вычислительные платформы.
    • Практическая часть: конвертация PyTorch моделей в форматы onnx и trt. Пример использования фреймворка Tensorflow.

8. Встраивание моделей машинного обучения в программные решения

    • Теоретическая часть: на уроке подводятся итоги курса, систематизируется пройденный материал. Дополнительно рассказывается о современных подходах работы с моделями машинного обучения – MLOps. Раскрываются плюсы и минусы использования моделей в монолитных и микросервисных архитектурах.
    • Практическая часть: создание микросервисов для инференса моделей машинного обучения в рамках REST API сервиса и отдельного инфереснс сервиса для запуска моделей на примере Triton Inference Server и Tensorflow Serving.

! Данный курс может быть заказан согласно 44-ФЗ, 223-ФЗ (закупка, аукцион, запрос котировок, конкурсные процедуры)

Слушатели рекомендуют нас
5.0
5.0
FAQ

Онлайн обучение реализуется в Системе Дистанционного Обучения УЦ Микротест — Mirapolis и проходит в реальном времени с преподавателем. За несколько дней до начала обучения вы получаете необходимые ссылки для подключения к курсу и доступ к Личному кабинету.

Более подробно вы можете ознакомиться с информацией на странице дистанционного обучения.

Если у вас остались вопросы, то обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru), и мы ответим на все ваши вопросы.

Очное обучение проходит на территории Учебного центра Микротест по адресу: Москва, Дербеневская наб. д. 7 стр.5, 5 этаж.

За несколько дней до начала обучения участник получает приглашение, в котором указан адрес места проведения и другая полезная информация для обучения.

Если вы не получили приглашение — обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru), и мы ответим на ваши вопросы и продублируем приглашение на вашу почту.

  1. Обучение проходит в реальном времени с преподавателем, вы можете задавать свои вопросы и разбирать интересные кейсы сразу в процессе обучения.
  2. Вашу учебную группу будет сопровождать координатор, которому можно задавать организационные вопросы.
  3. Если вы по каким-то причинам пропустили онлайн-занятие, то все записи будут доступны 24/7 в вашем личном кабинете в Системе Дистанционного Обучения. Также вы можете их использовать для закрепления материала.
  4. Дополнительно для вашего удобства мы создаем чат в Telegram вашей группы, где вы сможете задавать вопросы преподавателю, координатору и обмениваться опытом с коллегами по обучению.

По итогу прохождения обучения слушатели получают либо Сертификат Учебного центра о прохождении курса, либо Удостоверение о повышении квалификации, зарегистрированное в ФРДО (Федеральный реестр сведений о документах об образовании и (или) о квалификации, документах об обучении).

Помимо этого, по факту прохождения авторизованных курсов вендоров Eltex, PostgresPro, Astra Linux, QTECH, АЭРОДИСК и др. выдается электронный сертификат вендора.

В основном корпусе в Москве по адресу Дербеневская набережная д.7 стр.5, БЦ «Оазис», парковки, к сожалению, нет. Зато есть муниципальная платная парковка на всех прилегающих улицах.

По поводу остальных филиалов и корпусов — уточняйте информацию у наших менеджеров. Мы постараемся сделать всё возможное для вашего комфортного обучения.

Да, во время занятий для слушателей всегда доступны чай, кофе, печенье и другие снеки на кофе-брейках. Помимо этого, в обеденный перерыв будет предложен полноценный горячий обед.

Наш центр работает с корпоративными и частными клиентами. Для каждой категории клиентов мы разработали различные варианты сотрудничества, позволяющие гибко подходить к ценообразованию и вариантам оплаты.

Обо всех специальных условиях читайте в разделе Спецпредложения или обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru)

Также подпишитесь на новости нашего учебного центра, где вы первыми узнаете про интересные предложения от нас.

Не нашли подходящиего курса?
Оставьте заявку на обучение для вашей организации
Почему выбирают обучение у нас
Техническая
экспертиза

Эксперты в обучении:

  • Сети передачи данных и связь
  • ОС Linux и платформы виртуализации
  • Центры обработки данных и СХД

Опытные преподаватели с мультивендорной экспертизой

Расширенный лабораторный полигон для практики

Подготовка ИТ-специалистов по государственным профессиональным стандартам

Образовательный девелопер

Проектирование и реализация мультивендорных образовательных решений, программ «под ключ»

Разработка и реализация технологических решений для оценки компетенций: тесты, лабораторные полигоны и стенды

Большой опыт создания технологических партнерств с ИТ-вендорами, дистрибьюторами и крупными интеграторами

Пул экспертов в управлении образовательными проектами + разработчики, методологи, педагогические дизайнеры

Подпишитесь и будьте в курсе
Информация о новинках, скидках и акциях. Уже более 36 000 подписчиков!