Выберите городМосква
Москва
Екатеринбург
Тюмень
Санкт-Петербург
Сочи
Тбилиси
Москва+7 495 231-23-51
Екатеринбург
Тюмень
Санкт-Петербург
Тбилиси
Личный кабинет
Выберите городМосква
Москва
Екатеринбург
Тюмень
Санкт-Петербург
Сочи
Тбилиси
Москва+7 495 231-23-51
Екатеринбург
Тюмень
Санкт-Петербург
Тбилиси
Big Data
PNLP

NLP – ОБРАБОТКА ЕСТЕСТВЕННОГО ЯЗЫКА С PYTHON

Вендор
Тематика
Тип курса
Авторский
Формы обучения
Смешанная
СмешаннаяСмешанная
Длительность, формат и расписание ежедневных занятий для каждого курса индивидуальны и будут высланы каждому слушателю до начала обучения.
Длительность
40 ак. часов
Ближайшая дата
27 апр. / Москва
Стоимость
60 000.00 RUB
60 000.00 RUB
Описание

Курс “NLP с Python” представляет собой прикладные основы обработки естественного языка с помощью Machine Learning, включая всю необходимую теорию и практику по этой области искусственного интеллекта. В программе рассмотрены операции преобразования текстовых данных для дальнейшей обработки нейросетевыми алгоритмами: стемминг, лемматизация, векторизация. Приведены базовые NLP-задачи, которые могут быть решены с помощью методов машинного обучения: классификация и распознавание текстов, анализ звуковой информации. Большое внимание уделено практическому решению задач с использованием методов машинного обучения на языке Python с применением самых передовых нейросетей: BERT, GPT-2. Также курс “NLP с Python” включает изучение особенностей промышленной разработки Data Science решений и их эффективного развертывания в production: фреймворки Flask, Flacon, Django, технологии контейнеризации с помощью Docker, специализированные облачные сервисы.

На практике вы самостоятельно создадите, обработаете и проанализируете тексты и звуковые сигналы, а также создадите собственный production-сервис для решения NLP-задач. В результате освоения программы курса вы овладеете не только основными навыками Machine Learning, необходимыми для обработки естественного языка, но и освоите популярные фреймворки и технологии для промышленного развертывания Data Science решений.

Цели курса
  • определение эмоциональной окраски (тональности) текста,
  • вопросно-ответные системы,
  • классификация текстов,
  • построение выводов по тексту;
  • распознавание речи;
  • анализ текста, включая извлечение данных, информационный поиск и анализ высказываний;
  • генерация текстов;
  • синтез речи;
  • машинный перевод;
  • автоматическое реферирование, аннотирование и упрощение текстовой информации.
Программа курса

МОДУЛЬ 1. ВВЕДЕНИЕ В NLP

Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов NLP, стандартный pipeline обработки текстовых данных (очистка, стемминг, лемматизация, классические представления текстовых данных: Bow, Tf-Idf). Обзор алгоритмов стемминга и лемматизации. Популярные библиотеки для работы с текстовыми данными (nltk, spacy, gensim, TextBlob).

Практическая часть: первичный анализ текстовых данных, предобработка текстовых данных, построение простейшей модели бинарной классификации на примере задачи определения спама в смс сообщениях.

Домашняя работа: улучшение простейшей модели классификации. Использование различных подходов к обработке текстовых данных и различных моделей машинного обучения.

МОДУЛЬ 2. EMBEDDINGS

Теоретическая часть: векторные представления слов/текста. Алгоритмы обучения векторных представлений: word2vec, Glove. Векторные представления текста: doc2vec. Embedding своими руками с помощью SVD разложения. Предобученные векторные представления для английского и русского языка.

Практическая часть: обучение векторного представления слов и его использование в задаче множественной классификации на примере датасета  20 News groups.

Домашняя работа: улучшение результатов работы построенной модели с использованием предобученных векторных представлений.

МОДУЛЬ 3. ПРИМЕНЕНИЕ СВЁРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ В NLP

Теоретическая часть: сверточные нейронные сети, параметры сверточных нейронных сетей, параметры обучения сверточных нейронных сетей, архитектура сверточных нейронных сетей в NLP. Ответ на вопроc когда использовать сверточные сети, а когда классические модели машинного обучения в NLP.

Практическая часть: использование сверточных нейронных сетей на примере задачи классификации твитов (датасет Рубцовой).

Домашняя работа: улучшение качества работы построенной модели.

МОДУЛЬ 4. РЕКУРРЕНТНЫЕ НЕЙРОННЫЕ СЕТИ

Теоретическая часть: архитектура RNN, CRNN, LSTM, GRU. Нейронные сети с attention. Задачи класса sequence to sequence. Машинный перевод. Архитектура нейронных сетей для машинного перевода.

Практическая часть: пишем нейронную сеть для машинного перевода “from scratch”.

Домашняя работа: тюнинг нейронной сети/обучение своей нейронной сети на другой паре языков.

МОДУЛЬ 5. РАБОТА СО ЗВУКОВОЙ ИНФОРМАЦИЕЙ

Теоретическая часть: физическая природа звука, оцифровка звукового сигнала. Виды цифровых представлений звукового сигнала (ряды, изображения). Speech to text / text to speech, подходы к решению. SOTA нейронные сети для Speech to text.

Практическая часть: пишем рекуррентную нейронную сеть классификации музыкальных жанров (речевых команд).

Домашняя работа: обучить сверточную нейронную сеть на представлениях звуковых сигналов в виде изображения на датасете с речевыми командами.

МОДУЛЬ 6. SOTA НЕЙРОННЫЕ СЕТИ В NLP

Теоретическая часть: предобученные нейронные сети в NLP, обзор архитектур нейронных сетей Bert и GPT-2. Режимы работы Bert и GPT-2. Использование Bert в задаче определения близких по смыслу текстов.

Практическая часть: решение задачи определения близких по смыслу текстов. Использование подхода без учителя. Использование Bert.

Домашняя работа: решение задачи с помощью GPT-2.

МОДУЛЬ 7. KEY WORD EXTRACTION / TEXT SUMMARIZATION

Теоретическая часть: подходы к решению задач key word extraction, text summarization. Алгоритм PageRank. Архитектуры нейронных сетей для задач key word extraction и text summarization

Практическая часть: пишем нейронную сеть для key word extraction.

Домашняя работа: пишем нейронную сеть для text summarization.

МОДУЛЬ 8. NAMED ENTITY RECOGNITION

Теоретическая часть: подходы к решению задач NER. Condition Random Fields. Нейронные сети для решения задачи NER.

Практическая часть: решаем NER c помощью CRF.

Домашняя работа: пишем нейронную сеть для NER.

МОДУЛЬ 9. ИСПОЛЬЗОВАНИЕ НЕЙРОННЫХ СЕТЕЙ В PRODUCTION

Теоретическая часть: сериализация/десериализация объектов в Python, фреймворки Flask, Flacon, Django. Контейнеризация, Docker. Использование сервиса с нейронной сетью в облаке, AWS. Специализированные серверы для использования нейронных сетей (tensorflow serving, torchServe)

Практическая часть: создание API с нейронной сетью с использованием специализированных серверов.

Домашняя работа: создание API с несколькими нейронными сетями.

Доступные формы обучения
Описание фомата

Смешанное обучение совмещает в себе очные и дистанционные форматы. Часть программы студенты могут пройти удаленно, а часть – в учебном центре. Некоторые темы в программе не требуют личного присутствия обучающегося, а более сложные для объяснения элементы (в основном уровня advanced) рассматриваются непосредственно в аудитории-лаборатории. Практические занятия проходят под руководством опытного инструктора на территории учебного центра, в то время как теорию обучающиеся проходят в удаленной форме под дистанционным контролем.

Длительность, формат и расписание ежедневных занятий для каждого курса индивидуальны и будут высланы каждому слушателю до начала обучения.

Смешанный формат позволяет оптимизировать процесс обучения и сократить время на ежедневную логистику «до» и «от» учебного центра в часы пик.

Расписание курса
Выберите удобную для вас дату
апр. 2021
27 - 30 апр.
Москва
СмешаннаяСмешанная
Преподаватель курса
Ожидается назначение
Стоимость
60 000.00 RUB
Если в расписании нет удобных для Вас дат, напишите нам - мы разработаем удобные варианты специально для Вас!
FAQ

По окончании обучения слушатели получают либо Сертификат Учебного Центра о прохождении курса, либо Удостоверение о повышении квалификации, зарегистрированное в ФРДО (Федеральный реестр сведений о документах об образовании и (или) о квалификации, документах об обучении). Для получения Свидетельства необходимо, чтобы длительность обучения превышала 16 академических часов, а также необходимо предоставить оригинал Диплома о профессиональном или высшем образовании государственного образца.

Помимо этого, по факту прохождения авторизованных курсов вендоров Cisco, Postgres, AstraLinux, Microsoft, ICAgile выдается электронный сертификат вендора.

Возьмите паспорт и Диплом об окончании профессионального или высшего образования. Диплом понадобится для получения Удостоверения о повышении квалификации (в случае отсутствия Диплома, по окончании курса будет выдан Сертификат Учебного Центра, подтверждающий факт пройденного обучения).

За несколько дней до начала обучения (обычно за неделю) все слушатели получают приглашение по указанной электронной почте (если обучение заказывалось централизованно, ваш персональный мейл могли не передать - обратитесь к специалисту вашей организации, кто заказывал курсы, приглашение есть у него). В приглашении указан адрес и прочая полезная для слушателя информация. Если вы не получили приглашение – обратитесь к нам любым удобным для вас способом, и мы сообщим адрес и продублируем приглашение на вашу почту.

В основном корпусе в Москве по адресу Дербеневская набережная д.7 стр.5, БЦ «Оазис», парковки, к сожалению, нет. Зато есть муниципальная платная парковка на всех прилегающих улицах.

По поводу остальных филиалов и корпусов – уточняйте информацию у наших менеджеров. Мы постараемся сделать всё возможное для вашего комфортного обучения.

Да, во время занятий для слушателей всегда доступны чай, кофе, прохладительные напитки и орешки, печеньки и другие снеки на кофе-брейках. Помимо этого, в обеденный перерыв будет предложен полноценный горячий обед.

Наш центр работает с корпоративными и частными клиентами. Для каждой категории клиентов мы разработали различные варианты сотрудничества, позволяющие гибко подходить к ценообразованию и вариантам оплаты.

Обо всех специальных условиях читайте в разделе Спецпредложения.

Недостаточно информации? Напишите нам, и мы сделаем вам предложение, от которого невозможно отказаться.

Не нашли подходящиего курса?
Оставьте заявку на обучение для вашей организации
Подпишитесь и будьте в курсе
Информация о новинках, скидках и акциях. Уже более 36 000 подписчиков!