Выберите городМосква
Москва
Алматы
Екатеринбург
Тюмень
Санкт-Петербург
Новосибирск
Сочи
Тбилиси
Москва
Алматы
Екатеринбург
Тюмень
Санкт-Петербург
Новосибирск
Сочи
Тбилиси
Личный кабинет СДО
Выберите городМосква
Москва
Екатеринбург
Тюмень
Санкт-Петербург
Сочи
Тбилиси
Москва+7 495 231-23-51
Екатеринбург
Тюмень
Санкт-Петербург
Сочи
Тбилиси
DPREP

ПОДГОТОВКА ДАННЫХ ДЛЯ DATA MINING НА PYTHON

Вендор
Тематика
Тип курса
Авторский
Длительность
32 ак. часов
Стоимость
77 040 RUB
Описание

Подготовка данных выполняется при загрузке информации в корпоративное озеро (Data Lake), интеллектуальном анализе данных (Data Mining) и моделировании в рамках машинного обучения (Machine Learning). Вообще процесс сбора и подготовки данных – один из самых трудоемких и сложных этапов в анализе информации, который занимает до 80% времени.

Статистические методики и специальное программное обеспечение позволяют значительно сократить временные и финансовые затраты всех этих процессов, а также повысить качество конечных результатов.

 

Кому полезен курс

Курс по подготовке данных к Data Mining ориентированы на статистиков, исследователей, начинающих Data Scientist’ов, специалистов по машинному обучению, архитекторов Data Lake, аналитиков и инженеров данных, которые отвечают за сбор, подготовку и очистку Big Data.

Также курс “Подготовка данных для Data Mining на Python” будет полезен специалистам по работе с большими данными, разработчикам и руководителям, которые хотят понять подходы к подготовке данных для решения бизнес-задач с помощью Machine Learning и получить практические навыки в этой области

Необходимая подготовка
  • опыт программирования на языке Python;
  • знание основ математического анализа и математической статистики;
Ваш результат обучения

Если вы хотите разобраться с основами Data Mining и научиться самостоятельно формировать датасеты для машинного обучения, а также освоить инструменты Apache Spark и Python для статистической обработки больших данных, вам необходим этот курс подготовка данных для Data Mining

Программа курса

1. ПРОДВИНУТЫЕ ВОЗМОЖНОСТИ БИБЛИОТЕК ЯЗЫКА PYTHON ДЛЯ ОБРАБОТКИ И ВИЗУАЛИЗАЦИИ ДАННЫХ

Цель: познакомить участников с продвинутыми возможностями основных библиотек языка Python для обработки и визуализации данных и сформировать необходимые навыки по работе с данными в рассматриваемых библиотеках

Теоретическая часть:

  • изучение возможностей библиотек языка Python для обработки (Pandas, NumPy, SciPy, Sklearn) и визуализации (matplotlib, seaborn) данных.
  • обзор основных приемов по работе с данными:
    • первичный анализ данных
    • получение описательных статистик
    • изменение типа данных
    • построение сводных таблиц
    • визуализация статистических характеристик данных (гистограммы, графики плотностей распределений, тепловые карты, «ящики с усами» и «виолончели»)

Практическая часть: решение практических задач обработки и визуализации данных на примере табличных данных.

2. БИБЛИОТЕКИ PYTHON В КОРРЕКТИРОВАНИИ ТИПИЧНЫХ ОСОБЕННОСТЕЙ В ДАННЫХ

Цель: познакомить участников с основными особенностями в данных, с которыми приходится сталкиваться в реальных задачах, и научить успешно их корректировать с использованием библиотек языка Python. Продемонстрировать применение указанных подходов в случае промышленного варианта подготовки данных на примере использования Apache Spark (PySpark).

Теоретическая часть:

  • обзор типичных особенностей в данных и подходов к их корректировке:
    • отсутствующие значения
    • выбросы
    • дубликаты
  • подготовка данных для использования в алгоритмах машинного обучения:
    • нормализация числовых данных
    • преобразование категориальных значений
    • работа с текстовыми данными

Практическая часть: подготовка «сырых» данных для использования в алгоритме машинного обучения с подробным анализом влияния каждой особенности датасета на конечный результат работы алгоритма

3. ПОДХОДЫ К ПОСТРОЕНИЮ ДОПОЛНИТЕЛЬНОГО ПРИЗНАКОВОГО ПРОСТРАНСТВА НА ОСНОВЕ ИСХОДНЫХ ДАННЫХ

Цель: познакомить участников с основными подходами получения дополнительных и наиболее значимых характеристик из исходных данных. Продемонстрировать влияние дополнительных признаков на улучшение метрик качества работы алгоритмов машинного обучения с использованием библиотеки Sklearn

Теоретическая часть:

  • обзор подходов формирования дополнительного признакового пространства и выбора наиболее значимых характеристик
    • увеличение размерности исходного признакового пространства
      • постановка задачи в случае обучения с учителем – с использованием целевой переменной
      • постановка задачи в случае обучения без учителя
    • уменьшение размерности исходного признакового пространства
  • подробный анализ задачи увеличения размерности исходного признакового пространства в случае обучения с учителем:
    • статистические методы фильтрации признаков в задачах классификации и регрессии
    • методы машинного обучения как инструменты для получения наиболее значимых признаков в данных

 Практическая часть: решение прикладной задачи построения дополнительного признакового пространства и получения наиболее значимых признаков с подробным анализом влияния рассмотренных теоретических подходов на конечный результат работы алгоритмов машинного обучения

4. ПРОЕКТНАЯ РАБОТА

Цель: закрепить полученные слушателями курса знания по подготовке данных.

Теоретическая часть: краткий обзор пройденного материала со ссылками на рабочие блокноты, в которых решалась та или иная задача подготовки данных.

Практическая часть: самостоятельное решение задачи подготовки датасета для машинного обучения с использованием собственной базы данных или на лабораторном наборе от организаторов курса. Итоговый разбор работ слушателей курса.

! Данный курс может быть заказан согласно 44-ФЗ, 223-ФЗ (закупка, аукцион, запрос котировок, конкурсные процедуры)

Слушатели рекомендуют нас
5.0
5.0
FAQ

Онлайн обучение реализуется в Системе Дистанционного Обучения УЦ Микротест — Mirapolis и проходит в реальном времени с преподавателем. За несколько дней до начала обучения вы получаете необходимые ссылки для подключения к курсу и доступ к Личному кабинету.

Более подробно вы можете ознакомиться с информацией на странице дистанционного обучения.

Если у вас остались вопросы, то обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru), и мы ответим на все ваши вопросы.

Очное обучение проходит на территории Учебного центра Микротест по адресу: Москва, Дербеневская наб. д. 7 стр.5, 5 этаж.

За несколько дней до начала обучения участник получает приглашение, в котором указан адрес места проведения и другая полезная информация для обучения.

Если вы не получили приглашение — обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru), и мы ответим на ваши вопросы и продублируем приглашение на вашу почту.

  1. Обучение проходит в реальном времени с преподавателем, вы можете задавать свои вопросы и разбирать интересные кейсы сразу в процессе обучения.
  2. Вашу учебную группу будет сопровождать координатор, которому можно задавать организационные вопросы.
  3. Если вы по каким-то причинам пропустили онлайн-занятие, то все записи будут доступны 24/7 в вашем личном кабинете в Системе Дистанционного Обучения. Также вы можете их использовать для закрепления материала.
  4. Дополнительно для вашего удобства мы создаем чат в Telegram вашей группы, где вы сможете задавать вопросы преподавателю, координатору и обмениваться опытом с коллегами по обучению.

По итогу прохождения обучения слушатели получают либо Сертификат Учебного центра о прохождении курса, либо Удостоверение о повышении квалификации, зарегистрированное в ФРДО (Федеральный реестр сведений о документах об образовании и (или) о квалификации, документах об обучении).

Помимо этого, по факту прохождения авторизованных курсов вендоров Eltex, PostgresPro, Astra Linux, QTECH, АЭРОДИСК и др. выдается электронный сертификат вендора.

В основном корпусе в Москве по адресу Дербеневская набережная д.7 стр.5, БЦ «Оазис», парковки, к сожалению, нет. Зато есть муниципальная платная парковка на всех прилегающих улицах.

По поводу остальных филиалов и корпусов — уточняйте информацию у наших менеджеров. Мы постараемся сделать всё возможное для вашего комфортного обучения.

Да, во время занятий для слушателей всегда доступны чай, кофе, печенье и другие снеки на кофе-брейках. Помимо этого, в обеденный перерыв будет предложен полноценный горячий обед.

Наш центр работает с корпоративными и частными клиентами. Для каждой категории клиентов мы разработали различные варианты сотрудничества, позволяющие гибко подходить к ценообразованию и вариантам оплаты.

Обо всех специальных условиях читайте в разделе Спецпредложения или обратитесь к нам любым удобным для вас способом (тел. +7(495) 231-23-51 или training@training-microtest.ru)

Также подпишитесь на новости нашего учебного центра, где вы первыми узнаете про интересные предложения от нас.

Не нашли подходящиего курса?
Оставьте заявку на обучение для вашей организации
Почему выбирают обучение у нас
Техническая
экспертиза

Эксперты в обучении:

  • Сети передачи данных и связь
  • ОС Linux и платформы виртуализации
  • Центры обработки данных и СХД

Опытные преподаватели с мультивендорной экспертизой

Расширенный лабораторный полигон для практики

Подготовка ИТ-специалистов по государственным профессиональным стандартам

Образовательный девелопер

Проектирование и реализация мультивендорных образовательных решений, программ «под ключ»

Разработка и реализация технологических решений для оценки компетенций: тесты, лабораторные полигоны и стенды

Большой опыт создания технологических партнерств с ИТ-вендорами, дистрибьюторами и крупными интеграторами

Пул экспертов в управлении образовательными проектами + разработчики, методологи, педагогические дизайнеры

Подпишитесь и будьте в курсе
Информация о новинках, скидках и акциях. Уже более 36 000 подписчиков!